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Stability of Linear Systems

• Stability will be defined in terms of ODE’s and O∆E ’s

– ODE: Couples System

d~u

dt
= A ~u− ~f(t) (1)

– O∆E : Matrix form from applying Eq. 1

~un+1 = C ~un − ~gn (2)

– For Example: Euler Explicit C = [I − hA]
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Inherent Stability of ODE’s

• Stability of Eq. 1 depends entirely on the eigensystem of A.

• λm-spectrum of A: function of finite-difference scheme,BC

For a stationary matrix A, Eq. 1 is inherently stable if,

when ~f is constant, ~u remains bounded as t→∞.
(3)

• Note that inherent stability depends only on the transient

solution of the ODE’s.

~u(t) = c1
(
eλ1h

)n ~x1 + · · ·+ cm
(
eλmh

)n ~xm + · · ·

+ cM
(
eλMh

)n ~xM + P.S. (4)
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• ODE’s are inherently stable if and only if

<(λm) ≤ 0 for all m (5)

• For inherent stability, all of the λ eigenvalues must lie on, or to

the left of, the imaginary axis in the complex λ plane.

• This criterion is satisfied for the model ODE’s representing both

diffusion and biconvection.
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Numerical Stability of O∆E ’s

• Stability of Eq. 2 related to the eigensystem of its matrix, C.

• σm-spectrum of C: determined by the O∆E and are a function

of λm

~un = c1(σ1)
n ~x1 + · · ·+ cm(σm)

n ~xm + · · ·

+ cM (σM )
n ~xM + P.S. (6)

• Spurious roots play a similar role in stability.

• The O∆E companion to Statement 3 is

For a stationary matrix C, Eq. 2 is numerically stable

if, when ~g is constant, ~un remains bounded as n→∞.
(7)
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• Definition of stability: referred to as asymptotic or time stability.

• Time-marching method is numerically stable if and only if

|(σm)k| ≤ 1 for all m and k (8)

• This condition states that, for numerical stability, all of the σ

eigenvalues (both principal and spurious, if there are any) must

lie on or inside the unit circle in the complex σ-plane.

• This definition of stability for O∆E’s is consistent with the

stability definition for ODE’s.
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Review

• Our Approach leads to

– The PDE’s are converted to ODE’s by approximating the

space derivatives on a finite mesh.

– Inherent stability of the ODE’s is established by guaranteeing

that <(λ) ≤ 0.

– Time-march methods are developed which guarantee that

|σ(λh)| ≤ 1 and this is taken to be the condition for numerical

stability.
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Time-Space Stability and Convergence of O∆E’s

• A more classical view (but consistent) in the time-space sense.

– The homogeneous part of Eq. 2, ~un+1 = C~un

– Applying simple recursion ~un = Cn~u0

– Using vector and matrix p-norms

||~un|| = ||C
n
~u0|| ≤ ||C

n|| · ||~u0|| ≤ ||C||n · ||~u0|| (9)

– Assume that the initial data vector is bounded, the solution

vector is bounded if

||C|| ≤ 1 (10)

where ||C|| represents any p-norm of C.
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– This is often used as a sufficient condition for stability.

– Well known relation between spectral radii and matrix norms

∗ The spectral radius of a matrix is its L2 norm when the

matrix is normal, i.e., it commutes with its transpose.

∗ The spectral radius is the lower bound of all norms.

• The matrix norm approach and the σ − λ analysis are consistent

when both A and C have a complete eigensystem.
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Numerical Stability Concepts: Complex σ-Plane

• σ-Root Traces Relative to the Unit Circle

• The O∆E solution to the homogeneous part

~un = c1σ
n
1 ~x1 + · · ·+ cmσ

n
m~xm + · · ·+ cMσ

n
M~xM

• Semi-discrete approach leads to a relation between the σ and the

λ eigenvalues.

• Numerical stability of the O∆E requires that σ-roots lie within

unit circle in the complex σ-plane.

• Trace the locus of the σ-roots as a function of the parameter λh
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Stability in the Complex-σ Plane

• Define σexact = eλh and Separate:

– Dissipation (λh = β < 0) —— Convection (λh = iω)

• Plot Real(σ) and Imag(σ) for varying λh of both types.

h= οο

- oo,σ = e σ = e
i h

oo,

a) Dissipation b) Convection

λ

ω
hωhλ hλ

Ι(σ) Ι(σ)

(σ) (σ)RR

h= 0λ h= 0ω

Figure 1: Exact traces of σ-roots for model equations.
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σ − λ Relations for Various Schemes

1. σ − 1 − λh = 0 Explicit Euler

2. σ2 − 2λhσ − 1 = 0 Leapfrog

3. σ2 − (1 + 3
2
λh)σ + 1

2
λh = 0 AB2

4. σ3 − (1 + 23
12
λh)σ2 + 16

12
λhσ − 5

12
λh = 0 AB3

5. σ(1 − λh) − 1 = 0 Implicit Euler

6. σ(1 − 1
2
λh) − (1 + 1

2
λh) = 0 Trapezoidal

7. σ2(1 − 2
3
λh) − 4

3
σ + 1

3
= 0 2nd-Order

Backward

8. σ2(1 − 5
12
λh) − (1 + 8

12
λh)σ + 1

12
λh = 0 AM3

9. σ2 − (1 + 13
12
λh + 15

24
λ2h2)σ + 1

12
λh(1 + 5

2
λh) = 0 ABM3

10. σ3 − (1 + 2λh)σ2 + 3
2
λhσ − 1

2
λh = 0 Gazdag

11. σ − 1 − λh − 1
2
λ2h2 = 0 RK2

12. σ − 1 − λh − 1
2
λ2h2 − 1

6
λ3h3 − 1

24
λ4h4 = 0 RK4

13. σ2(1 − 1
3
λh) − 4

3
λhσ − (1 + 1

3
λh) = 0 Milne 4th

Table 7.1. Some λ − σ Relations
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Traces of σ-roots for various methods.
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Traces of σ-roots for various methods.
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Types of Stability

• Conditional Stability: Explicit Methods

– O∆E ’s where λh ≤ Constant
– λ spectrum, e.g. λbh = − ah

∆x (1− cos(k∆x) + isin(k∆x))

– Given ∆x, wave speed a, and difference scheme: λ fixed

– Adjust h = ∆t to satisfy stability bound

– Time accuracy: use an appropriate h

– Mildly-unstable: Prof. Milton VanDyke

Lock bike fork and peddle as fast as you can, you may cross

the street before you fall over and a truck hits you.
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• Un-Conditional Stability: Implicit Methods

A numerical method is unconditionally stable if it is

stable for all ODE’s that are inherently stable.

– O∆E ’s where λh→∞ is stable

– Time accuracy: use an appropriate h

– Steady-State: any h which converges fast.

– Computationally expensive compared with Explicit Methods
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Stability Contours in the Complex λh Plane.

• Another view of stability properties of a time-marching method

is to plot the locus of the complex λh for which |σ| = 1

• |σ| refers to the maximum absolute value of any σ, principal or

spurious, that is a root to the characteristic polynomial for a

given λh.

• Inherently stable ODE’s lies in the left half complex-sigma plane
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Example for Euler Explicit

• Euler explicit: σee = 1 + hλ

– Wave equation: central differencing, λc = −ai sin(k∆x)
∆x

σee = 1− ah

∆x
isin(k∆x)

– |σee| > 1.0 for all h, unconditionally unstable

• Wave equation: 1st order backward differencing,

λbh = − ah
∆x (1− cos(k∆x) + isin(k∆x))

– |σee| ≤ 1.0 for all some h, conditionally stable

– Note: CFL = ah
∆x , CFL Number
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• Complex λ-plane, Euler explcit, σee = 1 + λh

– Let λh = x+ iy, then σee = 1 + x+ iy

|σee| =
√

(1 + x)2 + y2

– Contour of |σee| = 0.8 leads to (1 + x)2 + y2 = (0.8)2: circle in

x, y centered at x = −1 with radius 0.8 , Stable

– Contour of |σee| = 1.2 leads to (1 + x)2 + y2 = (1.2)2’: circle

in x, y centered at x = −1 with radius 1.2, Un-Stable
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Example for Euler Implicit

• Euler implicit: σei = 1
1−λh

– Wave equation: central differencing, λc = −ai sin(k∆x)
∆x

σei =
1

1 + ah
∆x isin(k∆x)

– |σei| < 1.0 for all h, unconditionally stable

– Even for Compex λh: unconditional stability
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• Complex λ-plane, Euler Implcit, σei = 1
1−λh

– Let λh = x+ iy, then σei = 1
1−x−iy

|σei| =
1√

(1− x)2 + y2

– Contour of |σei| = 0.8 leads to (1− x)2 + y2 = ( 1
0.8 )2: circle in

x, y centered at x = 1 with radius 1
0.8 , Stable

– Contour of |σei| = 1.2 leads to (1− x)2 + y2 = ( 1
1.2 )2: circle in

x, y centered at x = 1 with radius 1
1.2 < 1.0, Un-Stable

– The unstable contours are in the right half of the inherent

stable of the ODE’s
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Figure 2: Stability contours for the θ-method.
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Stability contours for some explicit methods.
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Stability contours for Runge-Kutta methods.
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Fourier Stability Analysis

• Classical stability analysis for numerical schemes

• Fourier or von Neumann approach.

– Periodic in space derivative, similar to modified wave number

– Usually carried out on point operators

– Does not depend on an intermediate stage of ODE’s.

• Strictly speaking it applies only to difference approximations of

PDE’s that produce O∆E’s

• Serves as a fairly reliable necessary stability condition, but it is

by no means a sufficient one.

25



The Basic Procedure

• Impose a spatial harmonic as an initial value on the mesh

• Will its amplitude grow or decay in time?

• Determined by finding the conditions under which

u(x, t) = eαt · eiκx (11)

• Is a solution to the difference equation, where κ is real and κ∆x

lies in the range 0 ≤ κ∆x ≤ π.

• For the general term,

u
(n+`)
j+m = eα(t+`∆t) · eiκ(x+m∆x) = eα`∆t · eiκm∆x · u(n)

j

• u(n)
j is common to every term and can be factored out.
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• Find the term eα∆t, which we represent by σ, thus:

σ ≡ eα∆t

• Since eαt =
(
eα∆t

)n
= σn

For numerical stability |σ| ≤ 1 (12)

• Solve for the σ’s produced by any given method

• A necessary condition for stability, make sure that, in the worst

possible combination of parameters, condition 12 is satisfied.
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Example 1

• Finite-difference approximation to the model diffusion equation

• Richardson’s method of overlapping steps.

u
(n+1)
j = u

(n−1)
j + ν

2∆t

∆x2

(
u

(n)
j+1 − 2u

(n)
j + u

(n)
j−1

)
(13)

– Substitution of Eq. 11 into Eq. 13

σ = σ−1 + ν
2∆t

∆x2

(
eiκ∆x − 2 + e−iκ∆x

)
or

σ2 +

[
4ν∆t

∆x2
(1− cosκ∆x)

]
︸ ︷︷ ︸

2b

σ − 1 = 0 (14)

– Eq. 11 is a solution of Eq. 13 if σ is a root of Eq. 14.
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– The two roots of Eq. 14 are

σ1,2 = −b±
√
b2 + 1

– One |σ| is always > 1.

– Therefore, that by the Fourier stability test, Richardson’s

method of overlapping steps is unstable for all ν, κ and ∆t.
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Example 2

• Finite-difference approximation for the model biconvection

equation

u
(n+1)
j = u

(n)
j − a∆t

2∆x

(
u

(n)
j+1 − u

(n)
j−1

)
(15)

σ = 1− a∆t

∆x
· i · sinκ∆x

• |σ| > 1 for all nonzero a and κ.

• Thus we have another finite-difference approximation that, by

the Fourier stability test, is unstable for any choice of the free

parameters.
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